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ABSTRACT

A multiple correlation coefficient is discussed to measure

the degree of association between a random variable Y and a set

of random variables X, ... , X:. The coefficient is defined in

terms of a weighted Kendall's tau, suitably normalized. It is

directly compatible with the rank statistic approach of analyzing

linear models in a regression, prediction context. The popula-

tion parameter equals the classical multiple correlation coef-

ficient if the multivariate normal model holds but would be more

robust for departures from this model. Some results are given on

the consistency of the sample estimate and on a test for inde-

pendence.

Key Words: Rank statistics, linear models, multiple correlation,
robust statistics
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1. INTRODUCTION

Consider a context with p + 1 random variables Y and

p (X1 ,P.)' Suppose that Y is viewed as a dependent
p

variable, X1, ... , Xp as independent variables and interest

is in measuring the degree of association between Y and

X, ... , Xp as is typical with a multiple correlation parameter.

The classical multiple correlation coefficient P .

of the multivariate normal model has many useful properties but

it lacks robustness (see Huber (1977)). Its sample estimate is

sensitive to outliers and heavier tailed distributions and can be

inefficient for nonnormal distributions. An alternate measure is

needed which is more robust in such situations.

One important property of P ..X p is that it is the

Pearson correlation between Y and a best linear prediction of

Y from X in the sense of minimum squared error. In tnis way

Py..*X is directly related to regression concepts in

interpretation and methodology. This property can be retained in

defining a more robust multiple correlation coefficient if the

correlation measure and the linear predictor are replaced by more

robust choices. This paper will explore such a measure using a

linear predictor based on rank estimates of regression coeffi-

cients. The measure of association used will be a weighted

Kendall's tau parameter which is directly comparable with the

rank-regression approach.
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Estimates of regression coefficients based on rank statis-

tics have been developed by many authors; in particular, see

Jurehcova (1971), Jaeckel (1972), McKean and Hettmansperger

(1976, 1977) and Sievers (1983) for some of the basic properties

and results on their robustness and efficiency. The connection

between weighted Kendall's tau statistics and rank regression

statistics was mentioned in Sievers (1978).

In a bivariate setting, Kendall's tau is a widely used non-

parametric measure of association. Several useful extensions

have been discussed for multivariate settings; see Moran (1951),

Bobko (1977) and Agresti (1977). This paper will differ by

emphasizing the connection to the corresponding regression, pre-

diction problem. A natural population parameter will be used to

allow for a direct, meaningful interpretation of sample results.

The sample estimate should be highly efficient, in contrast to

earlier methods, although a stronger model is needed.

The basic measure of association treated here is a weighted

Kendall's tau. The weights will be important in keeping the cor-

relation measure directly compatible with the corresponding

regression, prediction concepts and methods. In the regression

problem it is known that weights should be used to avoid low ef-

*ficiency; see Sievers (1978), Scholz (1977>. Only in carefully

designed experiments where nonrandom, equally spaced values for

the independent variables can be set would the weights be

I
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unnecessary, and in such situations multiple correlation issues

are usually not important.

2. THE BIVARIATE CASE

This section considers the bivariate case to introduce some

ideas and motivate the main definition to follow. Consider a

pair of random variables (Y, X) with a nondegenerate bivariate

distribution. .Let (Y,, X1) and (Y2, X2) be independent with

the same distributions as (Y, X). A widely used nonparametric

measure of association is Kendall's tau

T - E(sgn(X2-X1 ) sgn(Y 2-Y1)), where sgn(t) - -1, 0, 1 as

t < 0, - 0, > 0. The value of T is in [-1, 1]. Following by

analogy the Pearson correlation, one could take the absolute

value to obtain a multiple correlation coefficient although it is

not clear how useful this could be.

The Kendall tau is symmetric in the role of X and Y.

However, in the multiple correlation context the variables should

be treated asymmetrically, with Y and X playing the part of a

dependent and independent variable, respectively. This would

relate multiple correlation concepts more directly to regression,

prediction concepts as is familiar with the classical

PY.X ...k . *Moreover, in the regression problem it has been

noted in Jaeckel (1972), Scholz (1977) and Sievers (1978) that

I ,
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the use of weights depending on X is needed to obtain high

efficiency in the nonparametric procedure based on Kendall's tau.

These considerations motivate a definition of a correlation

coefficient

=E(IX 2-Xlj sgn(x2-XI) sgn(Y 2-Y 1 ))/E(IX 2-Xl)

E((X 2-X1 ) sgn(Y 2-Y1 ))/E(IX2-XII),'

where in the first form, the numerator is a weighted Kendall's

tau and the denominator is a suitable norming factor. The use of

differences here is natural for parameters based on rank order.

It is worth noting that the product-moment correlation coeffic-

ient can also be expressed in terms of differences as

E(2-X1)(Y2-Y1))/[E(X2-X 1 )2(2 1 Thus T* is "in

between" p and Kendall's tau by replacing one of the variables

Y2-Y1  by sgn(Y2-Y1 ).

The parameter T* has several desirable properties:

IT*( ( 1, T* is invariant under linear transformations of the

variables, T* - 0 if X and Y are independent, T* I if

Y is a linear function of X with probability one. Also if X

and Y have a bivariate normal distribution with correlation P

then T* p . These properties will be discussed in more

detail in the multivariate case in the next section.

- i : I - -.. .... .
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The definition of -* above does not lend itself readily to

an extension to higher dimensions and it is not suitable for a

multiple correlation since T* can be negative. The following

change in the definition will allow a natural extension. Let

be a value of a minimizing E(J(Y 2-Y1) - a(X2-X1I). Then define

- E(B.(X -X1 ) sgn(Y2-Y1 ))/E(IB.(X2 -X1)I)

if .* 0 and T - 0 if 0. = 0. Factoring out B., it follows

that T - sgn(8.)T*, so there is at most a sign difference

between T and T*. Later it is shown that T is nonnegative.

3. THE MULTIVARIATE CASE

Consider random variables Y and X = X, ... , X )'.-- p

Assume they have finite expectations, but otherwise their distri-

bution can be quite arbitrary for some of the material in this

section. Of special interest here is the model that specifies the

joint cdf of Y and X to be of the form

F(y - B!x)H(x), (3.1)

where F is a univariate cdf, H is a p-dimensional cdf and

_ " (1O1, ... ,BO) is a vector of unknown parameters. In

this model the conditional cdf of Y given X - x is

F(y -Vx). This property appears in the multivariate normal

model, but here the F is not assumed normal. No symetry or

centering assumptions are made on F or H. Alternately, this

model can be expressed as



Y - X e, (3.2)

where X has cdf H, e has cdf F and X and e are

independent.

Considerations in the bivariate case lead to the following

definition of a multiple correlation parameter. Let (Y1, 1 1)

and (Y2,1 2) be independent, each having the distribution of

(Y, X). Suppose j* = 8., ... , p)' minimizes

E[I(Y 2-Y1 ) - i'(.2-X1)I] - E(I(Y2 - Y - 4 - *'1)I1 (3.3)

as a function of B Then define a multiple correlation para-

meter by

p
E [ -1 B*k(X2k - Xlk) sgn(Y2 -Y 1

) ]
k-i

~p
E([1 B*k(X2k - Xlk)I]

k=l
(3.4)

E [8*(X2 - _X.) sgn(Y2 -Y 1 )]

E (I*' Qj - Xl)I

if 0 #O and let T - U if _ MO In the notation here

X. (Xil, ... , Xip)', i - 1, 2. Note that' (3.3) is a convex

function of 6. In most cases of practical interest B_ will be

unique. For ambiguous cases T will be left undefined.

L0
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Note that T is defined as the weighted Kendalls' tau as

modified in Section 2 for Y vs $'X. The linear function $'X

can be viewed as a best linear predictor of Y in the sense of

minimizing the variation in Y- V'X as measured by the absolute

difference of two independent copies. Recall that if zI and

z2 are independent copies of a random variable z, then

E(jz:-z 21) measures the variation in z (a Gini mean dif-

ference parameter). Being of first order, this will be less

sensitive to contamination and heavy tails in the distribution in

comparison to the square 'function E((z 1-z2)
2) - 2 var(z) used

in the classical approach. (3.3) is the population analog of

the dispersion function used in Sievers (1983).

Remark 3.1. Assume model (3.1). Let G denote the cdf of

the difference of two independent random variables each having

cdf F and assume G has a unique median. Then _ is the

unique point minimizing (3.3) and

- E[(X -X ) sgn(Y2-Y )/E[ (X -K •

Proof. Under model (3.1) the conditional distribution of

W Y-Y, given 2X -X - t has cdf G(w-8t) This
2 1gvn.2- 1 -*0_--

distribution has a unique median of 't since G has a unique

median by assumption and its value is 0 from W being sym-

metrically distributed about 0. It is well-known that the



8

median minimizes an expected absolute deviation. Thus for each

fixed t, E[IJW - alit] is minimum if a = 't and the result

follows. a

Remark 3.2. If Y and X are independent, then T = 0.

Proof. A conditional argument as in the previous proof

shows that B - 0 minimizes (3.3), although it may not be uni

Regardless, independence implies that the numerator of T fe

tors and the result follows from E(sgn(Y2 -Y1 )) 
f 0 by

symmetry.

The following remark shows an important property; that

T- 0 is equivalent to Y and X being independent in model

(3.1). The classical parameter P has this property for
Y ... X1* * P

the multivariate normal model but not, in general, for nonnormal

cases.

Remark 3.3. Assume model (3.1) holds with X having a non-

degenerate distribution. Then

T - 0 <-> _ = 0 <->Y and X are indepenuent.-0

Proof. Because of the form assumed for the joint cdf of Y

and X in model (3.1), Y and X are independent if and only

if - 0. If 8 " 0 then T - 0 by definition. It
Z-0 -

remains to show that B 0 0 implies t 0.

! I i i I I . ..
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Assuming % 0 0, T - (X2-X1 has a nondegenerate dis-

tribution with cdf say L(t). Let W = Y 2-Y Under

model (3.1) the conditional cdf of W given T = t is

G(w-t). The numerator of T is

E(T sgn(W)) = E[T{P(W > 0T) - P(W < OIT)}]

- E[T(1 - 2G(-T))]

- E[T(2G(T) - )1

- 2 E(TG(T)),

using G(t) + G(-t) - 1. Then since T is symmetrically distri-

buted about 0, this equals

f ft[2G(t) - l1dL(t).

0

The integrand is positive on the range of integration and with T

having a nondegenerate distribution the integral is positive.

Thus T 0 0 as was to be shown.

Remark 3.4. 0 < T < 1.

Proof: The upper bound follows from

JE(ej,(X-X-- 2-1 sgn(Y 2-Y 1))J E( < 6k 2( L- -KI )-- sgn(Y 2- Yt 1

--a*X2 -X-I "
1U

Ih
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For the lower bound, it is enough to show the numerator of T is

nonnegative. Let W Y -Y and T" (X2-Xl). Then since

minimizes (3.3), write

U <E( I) - E(k -TI) - E(IW I - IV -TI)

I. = f t+ f (2w-t)+ f (t.-2w)+ f (-t)
w>O w>O w<O w<0
t<w t 51V t<Wt t>w

t_ f + f t + f -t) + f -t)
w>O w>O w<O j4<0

t<W t>W t <W t>W

f t + f (-t) f t sgn(w),

w>O w<O

where for simplicity the differential part of the integrals was

omitted. This last expression, the numerator of r, is thus non-

negative.

Remark 3.5. If Y -Y and ;(X -X ) have the same
2 12

sign with probability one, then T - + 1.

Proof. Let W - Y 2-Y and T -8(X2-X ). The

hypothesis implies sgn(W) - sgn(T) with probability one. Then

the numerator of T is E(T sgn(W)) a E(T sgn(T)) a E(jTJ) which

is the denominator of T .

shim_-
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The following remark shows that for the multivariate normal

model, T is identical to the classical multiple correlation

coefficient pY'X 1 -. Xp" Thus ic would share its many useful

properties for this model.

Remark 3.6. If Y and X have a multivariate normal dis-

tribution, then r - p x..X *

Proof. If Y and X have a multivariate normal distribu-

tion then model (3.1) holds with B being the vector of

least-squares regression coefficients. It is well-known that

SY-X ... X is the (Pearson) correlation coefficient of Y and

S'X. This is the same as the Pearson correlation coefficient of
-0=

the differences W = Y -Y and T - B'X -8'K Thus W and
2 1 -0=2 z0=1

T have a bivariate normal distribution with zero means and cor-

relation y x .X* It is straightforward to show that

1"p

E(T sgn(W)) - Q a.T<21 and E(IT) - GT 2/7

1** p

where aT is the standard deviation of T, and the results

follows.

Remark 3.7. T is invariant under nonsingular linear

transformations of Y and X.

Proof. T depends on Y through a signed difference and it

is clear that a linear transformation of Y would have no ef-

fect. If X is replaced by CX, where C is a p x p non-

singular matrix, then the . minimizing (3.3) changes to

I.
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8. Substituting in (3.4), ((C')-18 *)'(CX) - -- i

i = 1, 2, and no change in T would occur.

4. SAMPLE ESTIMATE OF T

Let (Y1 1 ), (Y 21 (Y n , X ) be independent

replicates of (Y, X), where X" (Xi, .i . , ip )', 1 < i < n,

and X w (Xs ... ,X7'. Define an n x vector
p

- 1 Y , an n x p matrix A (X .), a parameter

vector 80 8 )' and an error vector

e - (e, ... , )'. If (Y,X) satisfys model (3.2), then
n_

Y - A B + e, (4.1)

where the elements of e are iid with cdf F, the rows of A

are jid with cdf H and A is independent of e. An intercept

parameter could be added to this, model but the procedures here are

based on differences and it would cancel out and have no effect.

An estimate of T can be defined in a natural way as fol-

lows. First let P (8 ... , 8 )' be a vector that minimizes

a dispersion measure of the residuals given by

D(_) I(Yj - Yk) - (jk- X ik)

iqj k-l

(Y. - s'.) - (y - (4.2)

i<j

11M
d __ ___,__ _
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Then define an estimate of T as

I Ik ek(Xjk-Xik) sgn(Yj-Y )
J<1^T = -~

p
I k-I 8k(Xjk-x ik) I

i<j

(4.3)f'( -_X) sgn(Y-Y i )

= i<j

i<j

if 8 + U and - - 0 if 8 - 0.

The aispersion function (4.2) is a convex, piecewise linear

function of 8 and as a result there will be a point attaining

the minimum, although it may not be unique. This is the same

dispersion function used in Sievers (1983) and is algebraically

equal to the dispersion function in Jaeckel (1972) and in McKean

and Hettmansperger (1976, 1977) when Wilcoxon scores are used.

These references point out that the diameter of the set of points

attaining the minimum tends to zero asymptotically. Further, B

is the rank estimate of the regression scores 8 and these-o
*references contain further results on properties of 8, computa-

tional methods and more.
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The estimate T has the following properties:

0 < T < I, T - +1 if the rank order of the fitted values A8

is the same as the rank oraer of Y and T is invariant under

nonsingular linear transformations on Y. and X..
i L

The estimate r can be expressed in another form to view it

more explicitly as a rank statistic. First note the formula

[ (jk - Xik) gn(Y. - Y.)
iqj

hr . ::(2 Si -(n2)) -2 X aik -dk)Si, (4.4)

where S is the rank of Y. naano

.Xik /n. Using this, the numerator of t is

2 k Xi E)i ' -S 2YS

k i

where S a (S1, ... , S)', Y - A 8 is the vector of centered

fitted values and A - (Xik - )nxp is the centered A matrix.

(Alternately the rank vector could be centered.) Writing the

.denominator of r as I k(Xjk-Xik) sgn(k ^k jk-Xik

i<j k
and applying the same method gives

- 's / Y's (4.5)

I|
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where S (S2 , ... , Sn ) is the rank vector of Y.

Thus the numerator of T is coy(Y, S) and the denominator

is cov(Y, S). The covariance of Y with a permutation of the

integers (1, ... , n) is maximum when the integers are in the

same order as the elements of Y, see Jaeckel (1972). Thus the

denominator is the maximum covariance of Y with a rank vector.

This supports the choice of denominator in T , verifys < ( 1,

and shows T - + I when Y and Y are in the same rank order.

The formula (4.5) suggests an interesting generalization to

allow arbitrary scores instead of ranks. Simply replace the rank

vectors S and S by the corresponding permutations of a vector

of nondecreasing scores (a1 , ... , an). It appears that such a

statistic would have the same properties as t . This will be

discussed in a subsequent paper.

5. CONSISTENCY OF

In this section r is shown to be a consistent estimate of T

under model (4.1) with some additional regularity conditions:

(Ci) The cdf F has an absolutely continuous density function

f with f (f,/f) 2f dx <

(C2) The difference of two independent random variables with

cdfs F has cdf G and density function g which is

continuous at zero, g(O) > 0,

I [
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(C3) The random vector X has a positive definite variance-

covariance matrix E,

(C4) There exists a positive 6 such that

E[(X-),(X-P)] 2+6 , where P - E(X).

Some additional notation will be needed for the proofs of

this section. Define Tk (B) I (X jk-X ik) sgn[Yj-Y i - 1'(Xj-Xi)]

ij

and let T(O) - (T (6), ... , T ())'. Also let

L(8) * Y I1'(X -X.)1. Let &* - (l/2y)n-3 2 i 1T(O), where

i(j

Y- ff 2

LEMMA 5.1. Assume model (4.1) and conditions Cl C4.

Then if B -0

(i) n-3/2T(O) .) N(O, (1/3)Z ),

(ii) A-"P 0, where A-/8, and
(iii) N- - (O, (1112-Y2)!-1)

Note that when 8 holds, Cn(i -8) has the same distribution
-O --0

as , when 8 * 0 and thus the limiting distribution of-0
(iii).

Proof. The above results were given in Sievers (1983) for

the case of nonrandom X... The assumptions AI-A8 of that

paper will hold almost everywhere in the present context if

- --II ----



17

max Ix 1-I/r -- 0 a.e. , for 1 < k < p, and

1<i<n

(1/n)A'A - E a.e. as n -o m . But these follow from conditions

C3 and C4 and Lemma 4.1 of Ghosh and Sen (1971).

THEOREM 5.1. Assume model (4.1) and conditions C1-C4.

Then T , T.

Proof: First consider the case 0 + 0. Express r in the

form

- (0' T(O)/M)/(LCB)/M), (5.1)

where M n (2)" Similarly write

T

where i*(_) is a p x I vector with kth element

E[(X 2k-Xlk) sgn(Y 2-Y1)] and i(0C) - E[I.(X 2-X1 )I1.

From Lemma 4.1, it follows that B - 1. The vecto.r-0*

T(O)/M is a vector of U-statistics which converges in probability

to _*(0 ) by the usual theory. For the denominator of (5.1),
-

P
note that (L(8) - L(S ))/M -  0 since it is bounded above in

_--u

absolute value by maxISk - %okI 1k i<jXjk -XikI/M and the
1<k<pjjk i

latter converges to zero in probability. But L(S )/M is a

U-statistic converging in probability to (8). It follows that

T T n case L+ 0O.

(
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Now consider the case 8 - 0. The above argument does not

apply since both numerator and denominator of T tend to zero

and it is necessary to deal with the rates of convergence. First

express (5.1) in terms of A - Vnn 8 as

- CA'(o)/M)/(L(A)/M). (5.2)

From Lemma 5.1 (iii), A is 0 (1) and, as above,
p

T(O)/M -  P*(O) - 0. Thus T - 0 if it is shown that the

denominator of (5.2) is bounded away from zero in probability.

To show this let G 6 (A ERP: 1II .6} for 6>0,

where Rp is p-dimensional Euclidean space and I1.11 the usual dis-

tance. Let the boundary be 16 - {L E Rp : II ALI =-}. By Lemma

5.1 (iii), P(A E G) can be made arbitrarily close to one for

all n sufficiently large by taking 6 sufficiently small. Now

for any fixed Al, ... , X n L(A) is nonnegative, convex,

L(O) - 0 and so for any ' E there exists A E such that
6 -

L(A) < L(A'). Thus if A E (1, L(A)/M > inf A E L(A)/M and
16

it will be sufficient to show the latter is oounded away from

zero in probability.

ro accomplish this a compactification argument can be used.

l6 is a compact set. For any A, A' J, it can be shown

that JL(A) - L(A')I/M < II A A'1V, where V - Zk Zi~jlXjk-Xik/M

converges in probability. Also L(A)/M -'u(A) for any fixed

I * *4 ! I ,
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point A and therefore uniformly for any finite set of points A.

Finally, use the fact that infa rcc P(A) > 0, since P(A) is

nonnegative, convex, P(O) - 0 and i = 0 for some +

would contradict the assumption of a positive definite Z

matrix. a

6. A TEST OF INDEPENDENCE

In this section a test of the hypothesis of independence is

considered for model (4.1). In view of Remark 3.3, this is the

hypothesis H0 : T = 0 (or 8_- 0). The test will be based on
0-0

the numerator of , viewing its denominator as basically a

norming factor. The distribution theory for the numerator of T

is readily available from the results of Section 5.

From (4.3) and (4.4), the numerator of ; is 8'T(O) - 2 Y'S,

where Y - A S is the centered vector of fitted values and S is

the rank vector of Y. The proposed test of the hypothesis

2
H0 : T - vs H T > 0 is to reject H0  if Q > X 'p, where

2Q - (12Y/n) Y'S, Y is a consistent estimate of Y - ff (see

McKean and Hettmansperger (1976, 1977), Sievers and McKean

2
(1983)) and X is the quantile of order 1 - a of a chi-

square distribution with p degrees of freedom.

THEOREM 6.1. Assume model (4.1) and conditions Cl-C4.

Then under h0, Q has a limiting chi-square distribution with p

degrees of freedom.

*, II I -
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Proof. It is sufficient to replace y by y and consider,

with notation from Section 5,

(1Y/n) i's - 6 YA'[n 3 / 2 T(O)J - 12Y 2 _ ' *. (6.1)

Using Le-mma 5.1, this has the same limiting distribution as

2 ^ ^2
12Y A 'EA., which is X (p). U

McKean and Hettmansperger (1976, 1977) have proposed a test

of the equivalent hypothesis HO: 8 a 0 based on a drop in

dispersion for the case ot fixed X... In the notation here, this

A

statistic is (12Y/n)(D(O) - D(i)), where D is given in (4.2).

The asymptotics of Section 5 can be used to show this statistic

is asymptotically equivalent to Q and in this sense there is

agreement between the tests of T - 0 and 0 0. Another test-O -

statistic, asymptotically equivalent to Q, arises by replacing

by " in (6.1), namely 3n 3T(O)'E 1 T(O). This statistic

has the advantage of not requiring an estimate of the scale para-

meter Y.

I A•
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